Olfactory information processing in the Drosophila antennal lobe: anything goes?
نویسندگان
چکیده
When an animal smells an odor, olfactory sensory neurons generate an activity pattern across olfactory glomeruli of the first sensory neuropil, the insect antennal lobe or the vertebrate olfactory bulb. Here, several networks of local neurons interact with sensory neurons and with output neurons--insect projection neurons, or vertebrate mitral/tufted cells. The extent and form of information processing taking place in these local networks has been subject of controversy. To investigate the role of local neurons in odor information processing we have used the calcium sensor G-CaMP to perform in vivo recordings of odor-evoked spatiotemporal activity patterns in five genetically defined neuron populations of the antennal lobe of Drosophila melanogaster: three distinct populations of local neurons (two GABAergic and one cholinergic), as well as sensory neurons and projection neurons. Odor-specific and concentration dependent spatiotemporal response patterns varied among neuron populations. Activity transfer differed along the olfactory pathway for different glomerulus-odor combinations: we found cases of profile broadening and of linear and complex transfer. Moreover, the discriminability between the odors also varied across neuron populations and was maximal in projection neurons. Discriminatory power increased with higher odor concentrations over a wide dynamic range, but decreased at the highest concentration. These results show the complexity and diversity of odor information processing mechanisms across olfactory glomeruli in the fly antennal lobe.
منابع مشابه
Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.
Drosophila olfactory receptor neurons project to the antennal lobe, the insect analog of the mammalian olfactory bulb. GABAergic synaptic inhibition is thought to play a critical role in olfactory processing in the antennal lobe and olfactory bulb. However, the properties of GABAergic neurons and the cellular effects of GABA have not been described in Drosophila, an important model organism for...
متن کاملThe Broader, the Better? Drosophila Olfactory Interneurons Are Found to Respond to a Wider Range of Odorants Than Their Immediate Sensory Input
The Drosophila antennal lobe represents the first processing stage for olfactory information. In contrast to previous views, Olsen et al. (this issue of Neuron) demonstrate that antennal lobe output neurons show a broadened odor-tuning spectrum as compared to their sensory input. Likely candidates responsible for this broadening of odor tuning are recently identified excitatory local interneuro...
متن کاملIdentification and analysis of a glutamatergic local interneuron lineage in the adult Drosophila olfactory system
BACKGROUND The antennal lobe of Drosophila is perhaps one of the best understood neural circuits, because of its well-described anatomical and functional organization and ease of genetic manipulation. Olfactory lobe interneurons - key elements of information processing in this network - are thought to be generated by three identified central brain neuroblasts, all of which generate projection n...
متن کاملFunctional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway.
Feedback plays important roles in sensory processing. Mushroom bodies are believed to be involved in olfactory learning/memory and multisensory integration in insects. Previous cobalt-labeling studies have suggested the existence of feedback from the mushroom bodies to the antennal lobes in the honey bee. In this study, the existence of functional feedback from Drosophila mushroom bodies to the...
متن کاملA Neuronal Network Model of Drosophila Antennal Lobe by
Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Droso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 49 شماره
صفحات -
تاریخ انتشار 2008